Skip to main content

Artificial Intelligence Predicts Outcomes of Chemical Reactions






Artificial Intelligence software from IBM has employed a new method, in which the atoms are considered as letters and molecules as words. Then this method is used to translate the language to predict outcomes of organic chemical reactions, which could speed the development of new drugs.
In recent past years, scientists have been trying to teach computers how chemistry works so that computers can help to predict the results of organic chemical reactions. However, organic chemicals can be extraordinarily complex, and simulations of their behavior can prove time-consuming and inaccurate.

IBM analysts took the sort of AI Program ordinarily used to translate languages and applied it towards organic chemistry. But instead of translating English into Chinese or German, they had the same artificial intelligence technology to look at hundreds of thousands or millions of chemical reactions and had it learn the basic structure of the 'language' of organic chemistry, and then had it try to predict the outcomes of possible organic chemical reactions.

The new AI program is an artificial neural network, in which components dubbed neurons are fed data and cooperate to solve a problem, such as translating a sentence. The neural network then repeatedly adjusts the connections between its neurons and sees if these new patterns of connections are better at solving the problem. Over time, the neural net discovers which patterns are best at computing solutions, mimicking the process of learning in the human brain.

For further more updates on the availing research proficiency, do visit: https://neuralnetworks.conferenceseries.com/abstract-submission.php

For details about the webpage, go through the link provided; PS: https://neuralnetworks.conferenceseries.com/

Steven Parker | Neural Networks 2020
Email: neuralnetwork@memeetings.com
What'app Number:  +44 7723584425

Comments

Popular posts from this blog

Does Machines Perceive Human Emotions?

Researchers have developed a machine-learning model that takes computers a step closer to interpreting our emotions as naturally as humans do. In the growing research field of “affective computing”, robots and computers are being developed to analyze facial expressions, interpret our emotions and respond accordingly. Applications include, for instance, monitoring an individual’s health and well-being, gauging student interest in classrooms, helping diagnose signs of certain diseases, and developing helpful robot companions . A challenge, however, is people express emotions quite differently, depending on many factors. General differences can be seen between cultures, genders, and age groups. But other differences are even more fine-grained: The time of day, how much you slept, or even your level of familiarity with a conversation partner leads to subtle variations in the way you express, say, happiness or sadness in a given moment. Human brains instinctively catch these dev...

Market Analysis: Cognitive Computing, recent industry developments

In the ever dynamical world of data technology, business organizations are left with a massive amount of data with them. This data includes very crucial info for business use, however business organizations are solely ready to utilize 200th of whole data accessible with them with the use of traditional data analytics technology. To method and interpret the reaming 80th of the data that's within the form of videos, images, and human voice (also referred to as dark data), there's a requirement of cognitive computing systems. Cognitive computing  systems are a typical combination of hardware and software that constitute natural language processing (NLP) and machine language, and have the capability to collect, process, and interpret the dark data available with business organizations. Cognitive computing systems process and interpret the data in a probabilistic manner, unlike conventional big data analytic tools. However, to cope with the continuously evolving technolog...

Artificial Intelligence to predict possible life forms on other planets

Developments in artificial intelligence might facilitate us to predict the likelihood of life on different planets, according to research team from Plymouth University’s Centre for Robotics and Neural Systems used artificial neural networks (ANNs) that use similar learning techniques to the human brain, so as to estimate the likelihood of extra-terrestrial life on other worlds. It estimates the probability of life in each case, with the apparent potential to play a key role in future heavenly body exploration missions. ANNs are systems that attempt to replicate the way the human brain learns. They are particularly good at identifying patterns that are too complex for a biological brain to process and one of the main tools used in machine learning. As per the AI system the planets are first classified into 5 different types, determined by whether they are most similar to present-day Earth, Venus, Mars or Saturn’s moon Titan. All 5 of these objects are among the most potentia...