Skip to main content

Artificial Intelligence to predict possible life forms on other planets


Developments in artificial intelligence might facilitate us to predict the likelihood of life on different planets, according to research team from Plymouth University’s Centre for Robotics and Neural Systems used artificial neural networks (ANNs) that use similar learning techniques to the human brain, so as to estimate the likelihood of extra-terrestrial life on other worlds. It estimates the probability of life in each case, with the apparent potential to play a key role in future heavenly body exploration missions. ANNs are systems that attempt to replicate the way the human brain learns. They are particularly good at identifying patterns that are too complex for a biological brain to process and one of the main tools used in machine learning.

As per the AI system the planets are first classified into 5 different types, determined by whether they are most similar to present-day Earth, Venus, Mars or Saturn’s moon Titan. All 5 of these objects are among the most potentially habitable objects in our Solar System and are rocky bodies known to have atmospheres. The neural network uses a “probability of life” metric supported on the profile of the five target types, once a planet has been classified.

Atmospherically observed, these 5 rocky bodies of the Solar System called spectra are conferred as inputs to the network that is then asked to classify them in terms of the planetary sort. The Artificial Intelligence research team from the university trained the network with over wholly totally different spectral profiles; each with many hundred parameters that contribute to habitability, thus far the network performs well once presented with a test spectral profile that it hasn’t seen before. The technique may additionally be ideally suited to choosing targets for future observations.

Comments

Popular posts from this blog

Does Machines Perceive Human Emotions?

Researchers have developed a machine-learning model that takes computers a step closer to interpreting our emotions as naturally as humans do. In the growing research field of “affective computing”, robots and computers are being developed to analyze facial expressions, interpret our emotions and respond accordingly. Applications include, for instance, monitoring an individual’s health and well-being, gauging student interest in classrooms, helping diagnose signs of certain diseases, and developing helpful robot companions . A challenge, however, is people express emotions quite differently, depending on many factors. General differences can be seen between cultures, genders, and age groups. But other differences are even more fine-grained: The time of day, how much you slept, or even your level of familiarity with a conversation partner leads to subtle variations in the way you express, say, happiness or sadness in a given moment. Human brains instinctively catch these dev...

Neural Networks and Deep Learning

Neural Networks and Deep Learning have grown widely over the last few years. By using neural network architecture, softwares of AI can go through and check millions of images to find the right tone to fit any image. This method could be used to colorize still frames of white and black movies, surveillance footage or any number of images. Because neural networks can derive data from any number of resources with access to millions of sounds and videos, it can make predictive judgments. Neural network architecture can now synthesize audio to fill in the blank spots of a silent video. Neural network architecture can perform translations of text without preprocessing the sequence so that the algorithm can learn word relationships. The network then processes these relationships through its image mapping technology to create a contextual solution to a translation issue. By getting access to a wide variety of images and learning the context of each one, neural network architecture can...

Artificial Neural Networks can Detect Human Ambiguity

Artificial Neural Networks (ANNs) computational model based on the structure and functions of biological neural networks, it became a strong tool for researching artificial intelligence and information analysis and are utilised in robotics, social sciences and neuroscience for classification, prediction and pattern recognition. A global scientific team which incorporates scientists from Russia has created an artificial neural network that detects human ambiguity. They assist to classify neural signals, observe pathological activity of the brain (for example, with epilepsy), and neurodegenerative diseases. ANNs have three layers that are interconnected. The primary layer consists of input neurons. Those neurons send information on to the second layer that successively sends the output neurons to the third layer. Training an artificial neural network involves selecting from allowed models for which there are several associated algorithms. In this analysis, the scientist...